
Semantic Ray: Learning a Generalizable Semantic Field with
Cross-Reprojection Attention

Fangfu Liu1,3, Chubin Zhang2, Yu Zheng2, Yueqi Duan1†

1Department of Electronic Engineering, Tsinghua University
2Department of Automation, Tsinghua University

3Beijing National Research Center for Information Science and Technology
{liuff19,zhangcb19,zhengyu19}@mails.tsinghua.edu.cn, duanyueqi@tsinghua.edu.cn

⋯Scene 1

Scene K

Model 1

Model K

⋯⋯ … ……

Scene K+1 Scene K+2 Scene K+3

…

…Scene 1 Scene K

Unseen Scenes Generalization

Novel View Synthesis

S-Ray

Scene 1

Scene K

Novel View Synthesis

Semantic-NeRF Training Scenes Semantic-Ray (Ours)

Unseen Scenes Ground Truth S-Ray w/o ft S-NeRF w/o ft S-Ray w/ 2k-iters ft S-NeRF w/ 100k-iters ft

Figure 1. Top: Comparisons between Semantic-NeRF [63] and our method Semantic-Ray. Semantic-NeRF (S-NeRF for short) needs
to train one specific model for each scene, while our Semantic-Ray (S-Ray for short) trains one unified model on multiple scenes and
generalizes to unseen scenes. Bottom: Experimental comparisons between S-Ray and S-NeRF on generalization ability. We observe that
our network S-Ray can effectively fast generalize across diverse unseen scenes while S-NeRF fails in a new scene. Moreover, our result can
be improved by fine-tuning on more images for only 10 min (2k iterations), which achieves comparable quality with the Semantic-NeRF’s
result for 100k iterations per-scene optimization.

Abstract

In this paper, we aim to learn a semantic radiance field
from multiple scenes that is accurate, efficient and gener-
alizable. While most existing NeRFs target at the tasks of
neural scene rendering, image synthesis and multi-view re-
construction, there are a few attempts such as Semantic-

†Corresponding author.

NeRF that explore to learn high-level semantic understand-
ing with the NeRF structure. However, Semantic-NeRF si-
multaneously learns color and semantic label from a single
ray with multiple heads, where the single ray fails to pro-
vide rich semantic information. As a result, Semantic NeRF
relies on positional encoding and needs to train one specific
model for each scene. To address this, we propose Semantic
Ray (S-Ray) to fully exploit semantic information along the
ray direction from its multi-view reprojections. As directly

1

ar
X

iv
:2

30
3.

13
01

4v
1

 [
cs

.C
V

]
 2

3
M

ar
 2

02
3

performing dense attention over multi-view reprojected rays
would suffer from heavy computational cost, we design
a Cross-Reprojection Attention module with consecutive
intra-view radial and cross-view sparse attentions, which
decomposes contextual information along reprojected rays
and cross multiple views and then collects dense connec-
tions by stacking the modules. Experiments show that our
S-Ray is able to learn from multiple scenes, and it presents
strong generalization ability to adapt to unseen scenes.
Project page: https://liuff19.github.io/S-Ray/.

1. Introduction
Recently, Neural Radiance Field (NeRF) [34], a new

novel view synthesis method with implicit representation,
has taken the field of computer vision by storm [12]. NeRF
and its variants [2, 34, 59, 61] adopt multi-layer perceptrons
(MLPs) to learn continuous 3D representations and utilize
multi-view images to render unseen views with fine-grained
details. NeRF has shown state-of-the-art visual quality, pro-
duced impressive demonstrations, and inspired many subse-
quent works [4, 20, 21, 55, 59].

While the conventional NeRFs have achieved great suc-
cess in low- and middle-level vision tasks such as neural
scene rendering, image synthesis, and multi-view recon-
struction [4,13,28,37,38,44,52], it is interesting to explore
their more possibilities in high-level vision tasks and ap-
plications. Learning high-level semantic information from
3D scenes is a fundamental task of computer vision with
a wide range of applications [11, 14, 16, 35]. For example,
a comprehensive semantic understanding of scenes enables
intelligent agents to plan context-sensitive actions in their
environments. One notable attempt to learn interpretable se-
mantic understanding with the NeRF structure is Semantic-
NeRF [63], which regresses a 3D-point semantic class to-
gether with radiance and density. Semantic-NeRF shows
the potential of NeRF in various high-level tasks, such as
scene-labeling and novel semantic view synthesis.

However, Semantic-NeRF follows the vanilla NeRF by
estimating the semantic label from a single ray with a new
semantic head. While this operation is reasonable to learn
low-level information including color and density, a single
ray fails to provide rich semantic patterns – we can tell the
color from observing a single pixel, but not its semantic la-
bel. To deal with this, Semantic-NeRF heavily relies on po-
sitional encoding to learn semantic features, which is prone
to overfit the current scene and only applicable to novel
views within the same scene [53]. As a result, Semantic-
NeRF has to train one model from scratch for every scene
independently or provides very limited novel scene general-
ization by utilizing other pretrained models to infer 2D seg-
mentation maps as training signals for unseen scenes. This
significantly limits the range of applications in real-world

scenarios.
In this paper, we propose a neural semantic represen-

tation called Semantic Ray (S-Ray) to build a generaliz-
able semantic field, which is able to learn from multiple
scenes and directly infer semantics on novel viewpoints
across novel scenes as shown in Figure 1. As each view
provides specific high-level information for each ray re-
garding of viewpoints, occlusions, etc., we design a Cross-
Reprojection Attention module in S-Ray to fully exploit
semantic information from the reprojections on multiple
views, so that the learned semantic features have stronger
discriminative power and generalization ability. While di-
rectly performing dense attention over the sampled points
on each reprojected ray of multiple views would suffer from
heavy computational costs, we decompose the dense atten-
tion into intra-view radial and cross-view sparse attentions
to learn comprehensive relations in an efficient manner.

More specifically, for each query point in a novel view,
different from Semantic-NeRF that directly estimates its se-
mantic label with MLP, we reproject it to multiple known
views. It is worth noting that since the emitted ray from
the query point is virtual, we cannot obtain the exact repro-
jected point on each view, but a reprojected ray that shows
possible positions. Therefore, our network is required to si-
multaneously model the uncertainty of reprojection within
each view, and comprehensively exploit semantic context
from multiple views with their respective significance. To
this end, our Cross-Reprojection Attention consists of an
intra-view radial attention module that learns the relations
among sampled points from the query ray, and a cross-view
sparse attention module that distinguishes the same point in
different viewpoints and scores the semantic contribution of
each view. As a result, our S-Ray is aware of the scene prior
with rich patterns and generalizes well to novel scenes. We
evaluate our method quantitatively and qualitatively on syn-
thetic scenes from the Replica dataset [48] and real-world
scenes from the ScanNet dataset [8]. Experiments show
that our S-Ray successfully learns from multiple scenes
and generalizes to unseen scenes. By following Semantic-
NeRF [63], we design competitive baselines based on the
recent MVSNeRF [4] and NeuRay [28] architectures for
generalizable semantic field learning. Our S-Ray signifi-
cantly outperforms these baselines which demonstrates the
effectiveness of our cross-reprojection attention module.

2. Related Work
Semantic Segmentation. Semantic segmentation is one of
the high-level tasks that paves the way toward complete
scene understanding, with most methods targeting a fully
supervised, single-modality problem (2D [1, 5, 6, 29, 45]
or 3D [3, 15, 36, 64]). Recently, machine learning meth-
ods have proven to be valuable in semantic segmentation
[1, 18, 45, 51] which aims to assign a separate class label

2

https://liuff19.github.io/S-Ray/

Initial 3D contextual space

… ……

Cross-
Reprojection

Attention

CNN

�
Semantic-Aware

Weight Net

Geometry-Aware
Network

… ……

Semantic Ray
Construction

�

�
Semantic Ray

Rendering

Prediction

Figure 2. Pipeline of semantic rendering with S-Ray. Given input views and a query ray, we first reproject the ray to each input view
and apply a CNN-based module to extract contextual features to build an initial 3D contextual space (Sec. 3.2). Then, we apply the
Cross-Reprojection Attention module to learn dense semantic connections and build a refined contextual space (Sec. 3.3). For semantic
ray rendering, we adopt the semantic-aware weight net to learn the significance of each view to construct our semantic ray from refined
contextual space (Sec. 3.4). Finally, we leverage the geometry-aware net to get the density and render the semantics along the query ray.

to each pixel of an image. However, most methods suf-
fer from severe performance degradation when the scenes
observed at test time mismatch the distribution of the train-
ing data [24, 60]. To alleviate the issue, 2D-based archi-
tectures [14, 29, 45] are often trained on large collections
of costly annotated data [25] while most 3D prior works
[10, 17, 19, 23, 41, 42] rely on 3D sensors. Though straight-
forward to apply, 2D-based approaches only produce per-
pixel annotations and fail to understand the 3D structure of
scenes [53] and 3D sensors are too expensive to be widely
available as RGB cameras. In contrast to these methods, our
method reconstructs and then segments a 3D semantic rep-
resentation from 2D inputs and supervision alone without
ground truth 3D annotations or input geometry.

Neural Radiance Fields. Recently, implicit neural rep-
resentations have advanced neural processing for 3D data
and multi-view 2D images [32, 39, 47, 57]. In particular,
Neural Radiance Fields (NeRF) [34] has drawn great at-
tention, which is a fully-connected neural network that can
generate novel views of complex 3D scenes, based on a
partial set of 2D images. A NeRF network aims to map
from 3D location and viewing direction (5D input) to opac-
ity and color (4D input). Several following works emerge
trying to address its limitations and improve its perfor-
mance, including fast training [9, 50], efficient inference
[13, 26, 43, 44, 58], unbounded scenes training [2, 61], bet-
ter generalization [21, 46, 49, 52, 55, 59], generative mod-
eling [31, 37, 46], editing [20, 27, 54]. As NeRF achieves
very impressive results for novel view synthesis, researchers
start to explore high-level tasks in NeRF such as seman-
tic segmentation [53,63]. However, Semantic-NeRF [63] is
only applicable in the single-scene setting while NeSF [53]
only conducts experiments in synthetic data with insuffi-
cient generalization and high computational costs. In con-
trast, taking NeRF as a powerful implicit scene representa-

tion, our method can learn a generalizable semantic repre-
sentation of new, real-world scenes with high quality.

3. Method

Given a set of N input views with known camera poses,
our goal is to synthesize novel semantic views from arbi-
trary angles across unseen scenes with strong generaliz-
ability. Our method can be divided into three stages: (1)
build the 3D contextual space from source multiple views,
(2) decompose the semantic information from 3D space
along reprojected rays and cross multiple views with cross-
reprojection attention, (3) reassemble the decomposed con-
textual information to collect dense semantic connections
in 3D space and re-render the generalizable semantic field.
Our pipeline is depicted in Figure 2. Before introducing our
S-Ray in detail, we first review the volume rendering on a
radiance field [30, 34].

3.1. Preliminaries

Neural Volume Rendering. Neural volume rendering aims
to learn two functions: σ(x; θ) : R3 7→ R, which maps the
spatial coordinate x to a density σ, and c(x,d; θ) : R3 ×
R3 7→ R3 that maps a point with the viewing direction to
the RGB color c. The density and radiance functions are
defined by the parameters θ. To learn these functions, they
are evaluated through a ray emitted from a query view. The
ray is parameterized by r(t) = o+ td, t ∈ [tn, tf], where o
is the start point at the camera center, d is the unit direction
vector of the ray, and [tn, tf] is the near-far bound along the
ray. Then, the color for the associated pixel of this ray can
be computed through volume rendering [30]:

Ĉ(r; θ) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (1)

3

where T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
. In practice, the con-

tinuous integration can be approximated by a summation of
discrete samples along the ray by the quadrature rule. For
selected N random quadrature points {tk}Nk=1 between tn
and tf , the approximated expected color is computed by:

Ĉ(r; θ) =

N∑
k=1

T (tk)α(σ(tk)δk)c(tk), (2)

where T (tk) = exp
(
−
∑k−1

k′=1
σ (tk) δk

)
, α(x) = 1 −

exp(−x), and δk = tk+1−tk are intervals between sampled
points.

3.2. Building 3D Contextual Space across Views

NeRF-based generalization rendering methods [52, 55,
59] construct a radiance field by reprojecting a single point
of the query ray to source views and extracting the point-
based feature. It is reasonable to predict color from a sin-
gle point but is quite insufficient for semantics which needs
more contextual information. Therefore, we build the 3D
contextual space to learn rich semantic patterns by repro-
jecting the whole query ray across views. Given the N
points {pi}i=1,2,...,N sampled from the ray emitting from
the query view and known camera pose (i.e., the rotation
matrix R and the translation vector t). Without losing gen-
erality, we can rewrite the ray as:

r(z) = pi + z
pj − pi

||pj − pi||
, z ∈ R. (3)

Then, the ray warping function is defined as:

w(r(z),R, t) := Kπ(R · r(z) + t), (4)

which allows reprojecting the ray onto source views to
obtain the plane ray r∗(z), i.e., r∗(z) = w(r(z),R, t),
where K is the camera calibration matrix and π(u) :=
[ux/uz,uy/uz] is the projection function.

Let Fj(r
∗(z))(j = 1, 2, ...,m) denote the ray-based fea-

ture of the query ray reprojected on the j-th source view,
Fj(r

∗(zi)) be the pi point-based feature within the j-th
source view. Due to the permutation invariance of the
source views, we use a shared U-Net-based convolutional
neural network to extract dense contextual information F
from these views. Then, we build our 3D contextual space
M across views as:

M =


F1(r

∗(z1)) F1(r
∗(z2)) · · · F1(r

∗(zN))
F2(r

∗(z1)) F2(r
∗(z2)) · · · F2(r

∗(zN))
...

...
. . .

...
Fm(r∗(z1)) Fm(r∗(z2)) · · · Fm(r∗(zN))

 (5)

which is a 3D matrix (i.e., M ∈ Rm×N×C) to describe a
full space contextual information around the query ray with
feature dimension C.

3.3. Cross-Reprojection Attention

To model full semantic-aware dependencies from above
3D contextual space M, a straightforward approach is to
perform dense attention overM. However, it would suffer
from heavy computational costs. To address the problem,
we propose Cross-Reprojection Attention as shown in Fig-
ure 3, including intra-view radial attention and cross-view
sparse attention to approximate dense semantic connections
in 3D space with lightweight computation and memory.
Intra-view Radial Attention. First, we rewrite the con-
textual space as M = [F1,F2, ...,Fm]T , where Fi =
[Fi(r

∗(z1)),Fi(r
∗(z2)), ...,Fi(r

∗(zN))] is the radial fea-
ture in the i-th view. Then, we decompose the 3D contex-
tual space M along the radial direction in source views,
i.e., consider the Fi(i = 1, ...,m) which encodes the intra-
view contextual information within each view. Taking the
Fi ∈ RN×C as input, our intra-view radial attention with
H heads is formulated as

QR = FiWq, KR = FiWk, VR = FiWv, (6)

A(h) = σ
(Q(h)

R K
(h)T
R√
dk

)
V

(h)
R , h = 1, ...,H, (7)

f(QR,KR, VR) = Concat(A(1), ..., A(H))Wo, (8)

where σ(·) denotes the softmax function, and dk = C/H is
the dimension of each head. A(h) denotes the embedding
output from the h-th attention head, Q(h)

R ,K
(h)
R , V

(h)
R ∈

RN×dk denote query, key, and value of radial embeddings
respectively. Wq,Wk,Wv,Wo ∈ RC×C are the projection
matrices. Then, we obtain a refined F ′i as

F
′

i = f(QR,KR, VR), (9)

which contains global semantic-aware patterns along the re-
projected ray in i-th view. Similarly, we apply this intra-
view radial attention module to each Fi(i = 1, ...,m)
to refine the 3D contextual space, denoted as M′

=
[F ′1,F

′

2, ...,F
′

m]T .
Cross-view Sparse Attention. After the intra-view radial
attention module, we decomposeM′

cross multiple views
and rewrite M′

= [F ′r∗(1), ...,F
′

r∗(N)], where F ′r∗(i) =

[F ′1(r∗(zi)), ...,F
′

m(r∗(zi))]
T , which encodes the global

ray-based feature in each view. Aiming to exploit seman-
tic information from multiple views with their respective
significance which is sparse, we putM′

to the cross-view
sparse attention module. Following the predefined notation,
we compute the F ′′r∗(i) from

F
′′

r∗(i) = f(F
′

r∗(i)W̃q,F
′

r∗(i)W̃k,F
′

r∗(i)W̃v), (10)

where W̃q, W̃k, W̃v are the projection matrices in cross-
view sparse attention. Therefore, we get our final 3D con-
textual space M′′

= [F ′′r∗(1), ...,F
′′

r∗(N)], which collects
dense semantic connections around the query ray.

4

ℱ�∗ �
′

… ……

ℱ1
′

ℱ2
′

ℱ�
′

…

ℱ�∗ 1
′ ⋯

Cross-view
Sparse Attention

Refined 3D Contextual Space ℳ′′

… ……

ℱ1
′′

ℱ2
′′

ℱ�
′′

…
ℱ�∗ 1

′′ ℱ�∗ �
′′⋯

Intra-view
Radial Attention

Initial 3D Contextual Space ℳ

… ……

Intra-View

C
ross-View

ℱ1

ℱ2

ℱ�

…

ℳ′

 Figure 3. Pipeline of Cross-Reprojection Attention. Given the initial 3D contextual spaceM form Sec. 3.2, we first decomposeM along
the radial direction (i.e., each intra-view). Then, we apply the intra-view radial attention module to each Fi(i = 1, ...m) to learn the ray-
aligned contextual feature from each source view and build theM

′
. We further decompose theM

′
cross multiple views and employ the

cross-view sparse attention module to each F
′

r∗(i), thus capturing sparse contextual patterns with their respective significance to semantics.
After the two consecutive attention modules, we fuse the decomposed contextual information with the final refined 3D contextual space
M
′′

, which models dense semantic collections around the ray. (Best viewed in color)

3.4. Semantic Ray

Semantic Ray Construction. As done in the previous
pipeline, we have built a semantic-aware space M′′

=
[F ′′1 ,F

′′

2 , ...,F
′′

m]T which encodes refined 3D contextual
patterns around the light ray emitted from the query view.
To construct our final semantic ray from M′′

and better
learn the semantic consistency along the ray, we introduce a
Semantic-aware Weight Network to rescore the significance
of each source view. Then, we can assign distinct weights
to different views and compute the final semantic ray s as

s = w1F
′′

1 + w2F
′′

2 + ...+ wmF
′′

m, (11)

w ∈ C(τ) :=

{
w : 0 <

τ

m
< wi <

1

τm
,

m∑
i=1

wi = 1

}
, (12)

where w is the view reweighting vector with length m in-
dicating the importance of source views, and τ is the small
constant with τ > 0. The deviation of the weight distribu-
tion from the uniform distribution is bound by the hyperpa-
rameter τ , which keeps the semantic consistency instead of
bias across views.
Semantic Field Rendering. Finally, we use the rendering
scheme introduced in NeRF to render semantic logits from
the ray r with N sampled points, namely {zk}Nk=1. The
semantic logit Ŝ(r) is defined as

Ŝ(r) =

N∑
k=1

T (zk){1− exp(−σ(zk)δk)}s(zk), (13)

where T (zk) = exp(−
∑k−1

k′=1
σ(zk)δk), δk = zk+1 −

zk is the distance between two adjacent quadrature points

along the semantic ray and σ is predicted by a Geometry-
aware Network.
Network Training. More specifically, we discuss the for-
mulation of the semantic loss functions. We apply our S-
Ray with a set of RGB images with known camera parame-
ters denoted by I. The losses are computed for the set of all
rays denoted as R, which is emitted from the query image
I ∈ I. The semantic loss is computed as multi-class cross-
entropy loss to encourage the rendered semantic labels to
be consistent with the provided labels, where 1 ≤ l ≤ L
denotes the class index

Lsem(I) = −
∑
r∈R

[
L∑

l=1

pl(r) log p̂l(r)

]
, (14)

where pl, p̂l are the multi-class semantic probability at class
l of the ground truth map. Unlike Semantic-NeRF [63]
which needs heavy prior training for the radiance only in
a single scene, we can train our S-Ray Network with se-
mantic supervision in multiple scenes simultaneously and
fast generalizes to a novel scene.

3.5. Discussion and Implementation

Discussion with GPNR [49]. The recent work GPNR [49]
shares a similar motivation by aggregating features along
epipolar line. It is proposed for color rendering with
carefully-designed positional encoding to encode informa-
tion of view direction, camera pose, and location. In con-
trast, we focus on learning a generalizable semantic field for
semantic rendering through merely image features. In this
sense, S-Ray creates a neat design space without any posi-
tional encoding engineering. While GPNR requires training

5

Method Settings Synthetic Data (Replica [48]) Real Data (ScanNet [8])

mIoU↑ Total Acc↑ Avg Acc↑ mIoU↑ Total Acc↑ Avg Acc↑
MVSNeRF [4] + Semantic Head

Generalization
23.41 54.25 33.70 39.82 60.01 46.01

NeuRay [28] + Semantic Head 35.90 69.35 43.97 51.03 77.61 57.12
S-Ray (Ours) 41.59 70.51 47.19 57.15 78.24 62.55

Semantic-NeRF [63]

Finetuning

75.06 94.36 70.20 91.24 97.54 93.89
MVSNeRF [4] + Semantic Headft 53.77 79.48 62.85 55.26 76.25 69.70
NeuRay [28] + Semantic Headft 63.73 85.54 70.05 77.48 91.56 81.04
S-Rayft (Ours) 75.96 96.38 80.81 91.08 98.20 93.97

Table 1. Quantitative comparison. We show averaged results of mIoU, Total Acc, and Average Acc (higher is better) as explained in
Sec. 4.1. On the top, we compare S-Ray (Ours) with NeuRay [28]+semantic head and MVSNeRF [4]+semantic head with direct network
inference. On the bottom, we show our results with only 10 minutes of optimization.

24 hours on 32 TPUs, S-Ray only needs a single RTX3090-
Ti GPU with similar training time.
Implementation details. Given multiple views of a scene,
we construct a training pair of source and query view by first
randomly selecting a target view, and sampling m nearby
but sparse views as source views. We follow [28] to build
our sampling strategy, which simulates various view den-
sities during training, thus helping the network generalize
across view densities. We implement our model in Py-
Torch [40] and train it end-to-end on a single RTX3090-
Ti GPU with 24GB memory. The batch size of rays is
set to 1024 and our S-Ray is trained for 250k steps using
Adam [22] with an initial learning rate of 1e − 3 decay-
ing to 5e − 5. S-Ray is able to generalize well to novel
scenes and can also be finetuned per scene using the same
objective in (14). More details of network training, archi-
tecture design, and hyperparameter settings can be found in
the supplementary.

4. Experiments
We conduct extensive experiments and evaluate our

method with basically two settings. 1) We directly evalu-
ate our pretrained model on test scenes (i.e., unseen scenes)
without any finetuning. Note that we train only one model
called S-Ray and evaluate it on all test scenes. 2) We fine-
tune our pretrained model for a small number of steps on
each unseen scene before evaluation. While training from
scratch usually requires a long optimization time, we eval-
uate our S-Ray by achieving comparable performance with
well-trained models by much less finetuning time.

4.1. Experiment Setup

Datasets. To test the effectiveness of our method compre-
hensively, we conduct experiments on both synthetic data
and real data. For synthetic data, we use the Replica [48],
a dataset with 18 highly photo-realistic 3D indoor scene re-
constructions at room and building scale. Each Scene con-
sists of dense geometry, high-dynamic-range textures, and

per-primitive semantic class. Then, we choose 12 scenes
from the Replica as training datasets and the remaining un-
seen scenes as test datasets. For Real data, we use the Scan-
Net [8], which is a real-world large labeled RGB-D dataset
containing 2.5M views in 1513 scenes annotated with 3D
camera poses surface reconstructions and semantic segmen-
tation. We choose 60 different scenes as training datasets
and 10 unseen novel scenes as test datasets to evaluate gen-
eralizability in real data. More details about the split of
datasets will be shown in the supplementary.
Metrics. To accurately measure the performance of our
S-Ray, we adopt mean Intersection-over-Union (mIoU) as
well as average accuracy and total accuracy to compute seg-
mentation quality. What’s more, we will discuss our ren-
dering quality if we compute the color from the Geometry-
Aware Network in the posterior subsection. To evaluate ren-
dering quality, we follow NeRF [34], adopting peak signal-
to-noise ratio (PSNR), the structural similarity index mea-
sure (SSIM) [56], and learned perceptual image patch sim-
ilarity (LPIPS) [62].
Baselines. To evaluate our fast generalizability in an un-
seen scene, we choose Semantic-NeRF [63] as our base-
line. Since we are the first to learn a generalizable se-
mantic field in real-world scenes, we have no baselines to
compare our generalizable performance. In order to further
show our strong generalizability, we add the semantic head
by following Semantic-NeRF settings to the NeRF-based
methods which have shown generalizability in the recon-
struction task. Specifically, we compare our method against
MVSNeRF [4] with semantic head and NeuRay [28] with
semantic head in generalization and finetuning. Due to the
space limitation, We provide a more detailed discussion and
comparison with [4, 28, 49, 55, 63] in the supplementary.

4.2. Comparison with Baselines

To render each semantic map of the test view, we sam-
ple 8 source views from the training set for all evalua-
tion datasets in generalization settings. For the per-scene

6

 GTest Scenes T NeuRay+Semantic
w/o ft

S-Ray(Ours)
w/o ft

S-Ray(Ours)
w/ 2k-iters ft

Semantic-NeRF
w/ 100k-iters ft

Figure 4. Semantic rendering quality comparison. On the left, we show direct semantic rendering results of our method and Neu-
Ray [28]+semantic head. Limited by insufficient generalization, NeuRay+semantic head has difficulty to render semantics in unseen
scenes and fails to capture contextual structure, while our method is able to learn the semantic structural prior, thus showing strong gen-
eralizability across different scenes. On the right, we show the experimental comparison between our S-Ray with 2k iterations finetuning
(∼10min) and Semantic-NeRF [63] with 100k iterations.

optimization, we follow [63] to train it on the new scene
from scratch. To compare our results fairly, we follow the
Semantic-NeRF [63] to resize the images to 640 × 480 for
Replica [48] and 320× 240 for ScanNet [8]. Results can be
seen in Table 1 and in Figure 4.

Table 1 shows that our pretrained model generalizes well
to unseen scenes with novel contextual information. we ob-
serve that the generalization ability of our S-Ray consis-
tently outperforms both NeuRay [28] and MVSNeRF [4]
with semantic heads. Although they are the recent meth-
ods that have strong generalization ability, we show that di-
rectly following Semantic-NeRF by adding a semantic head
fails to fully capture the semantic information. Instead, our
Cross-Reprojection Attention can extract relational features
from multi-view reprojections of the query ray, thus achiev-
ing better accuracy and stronger generalization ability.

After finetuning for only 10 minutes, our performance is
competitive and even better than Semantic-NeRF with 100k
iters per-scene optimization. The visual results in Figure 4
clearly reflect the quantitative results of Table 1. The gen-
eralization ability of our S-Ray is obviously stronger than
NeuRay [28] with semantic head. As MVSNeRF [4] shows
even worse generalization performance than NeuRay with
the semantic head as shown in Table 1, we do not show its
visualization results due to the limited space. In general,
the comparison methods directly use point-based features
which benefit to per-pixel reconstruction instead of seman-
tics. Our approach utilizes the full spatial context informa-
tion around the query ray to build our semantic ray, thus

gt S-Ray w/ fS-Ray w/o ft t
Figure 5. Qualitative results of scene rendering for generalization
(w/o ft) and finetuning (w/ ft) settings in real data [8].

leading to the best generalization ability and high segmen-
tation across different test scenes.

4.3. Ablation Studies and Analysis

Reconstruction quality of S-Ray. To evaluate the recon-
struction quality of S-Ray, we follow (2) to render the ra-
diance from geometry aware network with photometric loss
same as [63]. In Table 2, we test the S-Ray for color render-
ing and compare it with Semantic-NeRF [63], MVSNeRF
[4] and NeuRay [28]. More comparisons can be found in the
supplementary. As shown in Table 2 and Figure 5, our S-
Ray can also generalize well in reconstruction. This shows
that our network cannot only capture the contextual seman-
tics but also learn geometry features well.

7

Method PSNR↑ SSIM↑ LIPIPS↓

Semantic-NeRF [63] 25.07 0.797 0.196
MVSNeRF [4] 23.84 0.733 0.267
NeuRay [28] 27.22 0.840 0.138
S-Ray (Ours) 26.57 0.832 0.173

S-Rayft (Ours) 29.27 0.865 0.127

Table 2. Comparisons of scene rendering in real data [8].

Training from scratch. In order to further present the
generalization ability of our S-Ray, we train our model on
a scene from scratch without pretraining the model. We
strictly follow the same process as Semantic-NeRF [63] to
train S-Ray. Results in Table 3 (ID 9 and 10) show that
training our method from scratch can also achieve similar
results as finetuning the pretrained model, and it obtains
even better results than Semantic-NeRF.
Evaluation of Cross-Reprojection Attention module. In
Table 3, we adopt ablation studies for Cross-Reprojection
module shown in Figure 3. We compare four models, the
full model (ID 1), the model without Cross-Reprojection
Attention (ID 2, 4), the model only with intra-view ra-
dial attention module (ID 3, 7), and the model only with
cross-view attention (ID 4, 8). The results show that Cross-
Reprojection Attention in S-Ray enables our network to
learn more contextual information as discussed in Sec. 3.3.

ID Description Setting mIoU Total Acc

1 full S-Ray Gen 57.15 78.24
2 w/o cross-reprojection Att Gen 45.34 53.67
3 only intra-view Att Gen 49.09 58.53
4 only cross-view Att Gen 52.56 63.25

5 full S-Ray Ft 91.08 98.20
6 w/o cross-reprojection Att Ft 76.30 86.02
7 only intra-view Att Ft 81.24 89.58
8 only cross-view Att Ft 87.01 93.34

9 S-Ray Sc 95.31 98.40
10 Semantic-NeRF [63] Sc 94.48 95.32

Table 3. Ablation studies. mIoU and Total Acc on the real data
from ScanNet [8]. “Gen” means the generalization setting, “Ft”
means to finetune on the scene and “Sc” means to train from
scratch.

Few-step finetuning of S-Ray. Table 4 reports mIoU and
finetuning time of different models with on the ScanNet [8]
dataset. We observe that by finetuning with limited time,
our model is able to achieve a better performance than a
well-trained Semantic-NeRF [63] with much longer train-
ing time. As Semantic-NeRF fails to present cross-scene
generalization ability, it still requires full training on the un-
seen scene. Instead, our S-Ray is able to quickly transfer
to the unseen scenes. Moreover, S-Ray outperforms other
competitive baselines with similar finetuning time, which

further demonstrates that our Cross-Reprojection Attention
operation successfully improves the generalization ability.

Method Train Step Train Time mIoU

Semantic-NeRF [63] 50k ∼2h 89.33
MVSNeRF [4] w/ s-Ft 5k ∼20min 52.02
NeuRay [28] w/ s-Ft 5k ∼32min 79.23

S-Ray-Ft (Ours) 5k ∼20min 92.04

Table 4. mIoU and training steps/time on real data [48]. “w/ s”
means adding a semantic head on the baseline architectures.

From the experiments above, we have the following key
observations:

1) Our Semantic Ray can exploit contextual information of
scenes and presents strong generalization ability to adapt
to unseen scenes. It achieves encouraging performance
without finetuning on the unseen scenes, and also ob-
tains comparable results to the well-trained Semantic-
NeRF with much less time of finetuning.

2) We show the effectiveness of our Cross-Reprojection At-
tention module through comprehensive ablation studies.
Experiments demonstrate that both intra-view and cross-
view attentions are crucial for S-Ray, and we achieve
the best performance by simultaneously exploiting rela-
tional information from both modules.

3) Our performance in radiance reconstruction shows the
great potential of our attention strategy, which is able to
learn both dense contextual connections and geometry
features with low computational costs.

5. Conclusion
In this paper, we have proposed a generalizable seman-

tic field named Semantic Ray, which is able to learn from
multiple scenes and generalize to unseen scenes. Differ-
ent from Semantic NeRF which relies on positional encod-
ing thereby limited to the specific single scene, we design
a Cross-Reprojection Attention module to fully exploit se-
mantic information from multiple reprojections of the ray.
In order to capture dense connections of reprojected rays in
an efficient manner, we decompose the problem into con-
secutive intra-view radial and cross-view sparse attentions
to extract informative semantics with small computational
costs. Extensive experiments on both synthetic and real-
world datasets demonstrate the strong generalizability of
our S-Ray and effectiveness of our Cross-Reprojection At-
tention module. With the generalizable semantic field, we
believe that S-Ray will encourage more explorations of po-
tential NeRF-based high-level vision problems in the future.
Acknowledgements. This work was supported in part by
the National Natural Science Foundation of China under
Grant 62206147, and in part by Deng Feng Fund.

8

References
[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

Segnet: A deep convolutional encoder-decoder architecture
for image segmentation. IEEE Trans. Pattern Anal. Mach.
Intell., 39(12):2481–2495, 2017. 2

[2] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In ICCV, 2021. 2, 3

[3] Erzhuo Che, Jaehoon Jung, and Michael J. Olsen. Object
recognition, segmentation, and classification of mobile laser
scanning point clouds: A state of the art review. Sensors,
19(4):810, 2019. 2

[4] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-
izable radiance field reconstruction from multi-view stereo.
In ICCV. IEEE, 2021. 2, 6, 7, 8, 13

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic im-
age segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. IEEE Trans. Pattern Anal.
Mach. Intell., 40(4):834–848, 2018. 2

[6] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 2

[7] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, 2018. 13

[8] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas A. Funkhouser, and Matthias Nießner. Scan-
net: Richly-annotated 3d reconstructions of indoor scenes.
In CVPR, 2017. 2, 6, 7, 8, 11, 12, 13, 15, 16, 17, 18

[9] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ra-
manan. Depth-supervised nerf: Fewer views and faster train-
ing for free. In CVPR, 2022. 3

[10] Bertrand Douillard, James Patrick Underwood, Noah Kuntz,
Vsevolod Vlaskine, Alastair James Quadros, Peter Morton,
and Alon Frenkel. On the segmentation of 3d LIDAR point
clouds. In ICRA, 2011. 3

[11] Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz
Hertlein, Claudius Gläser, Fabian Timm, Werner Wies-
beck, and Klaus Dietmayer. Deep multi-modal object de-
tection and semantic segmentation for autonomous driving:
Datasets, methods, and challenges. IEEE Trans. Intell.
Transp. Syst., 22(3):1341–1360, 2021. 2

[12] Kyle Gao, Yina Gao, Hongjie He, Denning Lu, Linlin Xu,
and Jonathan Li. Nerf: Neural radiance field in 3d vision,
a comprehensive review. arXiv preprint arXiv:2210.00379,
2022. 2

[13] Stephan J. Garbin, Marek Kowalski, Matthew Johnson,
Jamie Shotton, and Julien P. C. Valentin. Fastnerf: High-
fidelity neural rendering at 200fps. In ICCV, 2021. 2, 3

[14] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea,
Victor Villena-Martinez, and Jose Garcia-Rodriguez. A re-

view on deep learning techniques applied to semantic seg-
mentation. arXiv preprint arXiv:1704.06857, 2017. 2, 3

[15] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu,
and Mohammed Bennamoun. Deep learning for 3d point
clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell.,
43(12):4338–4364, 2021. 2

[16] Mohammad Hesam Hesamian, Wenjing Jia, Xiangjian He,
and Paul Kennedy. Deep learning techniques for medical
image segmentation: achievements and challenges. Journal
of digital imaging, 32(4):582–596, 2019. 2

[17] Zeyu Hu, Mingmin Zhen, Xuyang Bai, Hongbo Fu, and
Chiew-Lan Tai. Jsenet:joint semantic segmentation and edge
detection network for 3d point clouds. In ECCV, 2020. 3

[18] Zilong Huang, Xinggang Wang, Lichao Huang, Chang
Huang, Yunchao Wei, and Wenyu Liu. Ccnet: Criss-cross
attention for semantic segmentation. In ICCV, 2019. 2

[19] Shahram Izadi, Richard A. Newcombe, David Kim, Otmar
Hilliges, David Molyneaux, Steve Hodges, Pushmeet Kohli,
Jamie Shotton, Andrew J. Davison, and Andrew W. Fitzgib-
bon. Kinectfusion: real-time dynamic 3d surface reconstruc-
tion and interaction. In SIGGRAPH Talks, 2011. 3

[20] Wonbong Jang and Lourdes Agapito. Codenerf: Disentan-
gled neural radiance fields for object categories. In ICCV,
2021. 2, 3

[21] Mohammad Mahdi Johari, Yann Lepoittevin, and François
Fleuret. Geonerf: Generalizing nerf with geometry priors.
In CVPR, 2022. 2, 3

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 6

[23] Adarsh Kowdle, Christoph Rhemann, Sean Ryan Fanello,
Andrea Tagliasacchi, Jonathan Taylor, Philip L. Davidson,
Mingsong Dou, Kaiwen Guo, Cem Keskin, Sameh Khamis,
David Kim, Danhang Tang, Vladimir Tankovich, Julien P. C.
Valentin, and Shahram Izadi. The need 4 speed in real-time
dense visual tracking. ACM Trans. Graph., 2018. 3

[24] Daiqing Li, Junlin Yang, Karsten Kreis, Antonio Torralba,
and Sanja Fidler. Semantic segmentation with generative
models: Semi-supervised learning and strong out-of-domain
generalization. In CVPR, 2021. 3

[25] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in
context. In ECCV, 2014. 3

[26] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In NeurIPS,
2020. 3

[27] Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard
Zhang, Jun-Yan Zhu, and Bryan Russell. Editing conditional
radiance fields. In ICCV, 2021. 3

[28] Yuan Liu, Sida Peng, Lingjie Liu, Qianqian Wang, Peng
Wang, Christian Theobalt, Xiaowei Zhou, and Wenping
Wang. Neural rays for occlusion-aware image-based render-
ing. In CVPR, 2022. 2, 6, 7, 8, 12, 13, 17

[29] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 2015. 2, 3

[30] Nelson L. Max. Optical models for direct volume rendering.
IEEE Trans. Vis. Comput. Graph., 1(2):99–108, 1995. 3

9

[31] Quan Meng, Anpei Chen, Haimin Luo, Minye Wu, Hao Su,
Lan Xu, Xuming He, and Jingyi Yu. Gnerf: Gan-based neu-
ral radiance field without posed camera. In ICCV, 2021. 3

[32] Lars M. Mescheder, Michael Oechsle, Michael Niemeyer,
Sebastian Nowozin, and Andreas Geiger. Occupancy net-
works: Learning 3d reconstruction in function space. In
CVPR, 2019. 3

[33] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (TOG), 38(4):1–14, 2019. 13

[34] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2, 3, 6, 11, 13, 17

[35] Andres Milioto, Philipp Lottes, and Cyrill Stachniss. Real-
time semantic segmentation of crop and weed for precision
agriculture robots leveraging background knowledge in cnns.
In ICRA, 2018. 2

[36] Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill
Stachniss. Rangenet ++: Fast and accurate lidar semantic
segmentation. In IROS, 2019. 2

[37] Michael Niemeyer and Andreas Geiger. GIRAFFE: rep-
resenting scenes as compositional generative neural feature
fields. In CVPR, 2021. 2, 3

[38] Michael Oechsle, Songyou Peng, and Andreas Geiger.
UNISURF: Unifying neural implicit surfaces and radiance
fields for multi-view reconstruction. In ICCV, 2021. 2

[39] Jeong Joon Park, Peter Florence, Julian Straub, Richard A.
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, 2019. 3

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In NeurIPS, 2019. 6

[41] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and
Leonidas J. Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In CVPR, 2017. 3

[42] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NIPS, 2017. 3

[43] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. Derf: Decom-
posed radiance fields. In CVPR, 2021. 3

[44] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In ICCV, 2021. 2, 3

[45] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, 2015. 2, 3

[46] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. GRAF: generative radiance fields for 3d-aware im-
age synthesis. In NeurIPS, 2020. 3

[47] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In NeurIPS,
2019. 3

[48] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl
Ren, Shobhit Verma, et al. The replica dataset: A digital
replica of indoor spaces. arXiv preprint arXiv:1906.05797,
2019. 2, 6, 7, 8, 11

[49] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and
Ameesh Makadia. Generalizable patch-based neural render-
ing. In ECCV. Springer, 2022. 3, 5, 6, 12

[50] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In CVPR, 2022. 3

[51] An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, and Jie Zhou. Seg-
group: Seg-level supervision for 3d instance and semantic
segmentation. IEEE Trans. Image Process., 2022. 2

[52] Alex Trevithick and Bo Yang. Grf: Learning a general ra-
diance field for 3d representation and rendering. In ICCV,
2021. 2, 3, 4

[53] Suhani Vora, Noha Radwan, Klaus Greff, Henning Meyer,
Kyle Genova, Mehdi S. M. Sajjadi, Etienne Pot, Andrea
Tagliasacchi, and Daniel Duckworth. Nesf: Neural semantic
fields for generalizable semantic segmentation of 3d scenes,
2021. 2, 3

[54] Can Wang, Menglei Chai, Mingming He, Dongdong Chen,
and Jing Liao. Clip-nerf: Text-and-image driven manipula-
tion of neural radiance fields. In CVPR, 2022. 3

[55] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P.
Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo
Martin-Brualla, Noah Snavely, and Thomas A. Funkhouser.
Ibrnet: Learning multi-view image-based rendering. In
CVPR, 2021. 2, 3, 4, 6, 13

[56] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.
Simoncelli. Image quality assessment: from error visibility
to structural similarity. IEEE Trans. Image Process., pages
600–612, 2004. 6

[57] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Ronen Basri, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. In NeurIPS, 2020. 3

[58] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 3

[59] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images. In
CVPR, 2021. 2, 3, 4

[60] Jian Zhang, Lei Qi, Yinghuan Shi, and Yang Gao. Gener-
alizable model-agnostic semantic segmentation via target-
specific normalization. arXiv preprint arXiv:2003.12296,
2020. 3

[61] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 2, 3

10

[62] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In CVPR, 2018. 6

[63] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and An-
drew J. Davison. In-place scene labelling and understanding
with implicit scene representation. In ICCV, 2021. 1, 2, 3, 5,
6, 7, 8, 11, 12, 16, 18

[64] Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin
Ma, Wei Li, Hongsheng Li, and Dahua Lin. Cylindrical and
asymmetrical 3d convolution networks for lidar segmenta-
tion. In CVPR, 2021. 2

Appendix

Additional implementation details
Training details. At the training time, we first project the
query ray instead of a single point to each source view and
fetch the corresponding ray-based feature, which contains
rich contextual information in each intra-view. For pre-
training, we train on a single NVIDIA RTX3090-Ti GPU
with 24GB memory. On this hardware, we train our S-Ray
for 260k iterations in 60 different scenes of ScanNet [8]
(real-world data) and 100k iterations in 12 different scenes
of Replica [48] (synthetic data). For finetuning, we only re-
quire 10min finetuning time corresponding to 2k iterations.
This finetuning result is comparable and even better than
100k optimizations of Semantic-NeRF [63] from each in-
dependent scene.

We do not show the specific details of the semantic loss
design in the paper. In code implementation, we apply two-
stage (coarse and fine) ray sampling as done in NeRF [34].
Therefore, our semantic loss is actually computed as

Lsem = −
∑
r∈R

[
L∑

l=1

pl(r) log p̂lc(r) +

L∑
l=1

pl(r) log p̂lf (r)

]
(15)

where R are the set of sample rays within a training
batch, 1 ≤ l ≤ L is the class index, and pl, p̂lc, p̂

l
f are the

multi-class probability at class l of the ground truth, coarse
semantic logits and fine semantic logits for the query ray r.
Actually, for fair comparison in Section 4.2 of our paper, we
adopt the same training loss with Semantic-NeRF [63] as:

Ltotal = λ1Lsem + λ2Lphotometric, (16)

where the color head is from the geometry aware network
with photometric loss same as [63]. Like Semantic-NeRF,
we also set λ1 = λ2 = 1 in Section 4.2 and set λ1 =
0, λ2 = 1 as NeRF for ablation study in Table 2 of the paper.
Data split. Our training data consists of both synthetic data
and real data. For real data training, we choose 60 differ-
ent scenes from ScanNet [8] as training datasets and use the
image resolution of 320 × 240. We then choose 10 unseen
novel scenes as test datasets to evaluate the generalizability

of S-Ray in real data. For synthetic data, we choose 12 dif-
ferent scenes (i.e., 2 rooms, 2 offices, 7 apartments, 1 hotel)
from Replica [48] for the training set and the remains (i.e.,
2 apartments, 3 offices, 1 room) as test set with the image
resolution of 640 × 480. For each test scene, we select 20
nearby views; we then select 8 views as source input views,
8 as additional input for per-scene fine-tuning, and take the
remaining 4 as testing views. Our training data includes
various camera setups and scene types, which allows our
method to generalize well to unseen semantic scenarios.

Additional experiments and analysis
More discussion of loss function. When adding color ren-
dering, it is interesting to see the effect of the weighting fac-
tor, thus conducting the following experiments in Table 5.
We observe that color rendering can benefit semantics but
color rendering is not sensitive to semantics. Furthermore,
Table 5 shows that the semantic loss alone can also drive our
model to learn reasonable contextual geometry for semantic
information as visualized in Figure 6.

λ1/λ2 1/0 0.75/0.25 0.5/0.5 0.25/0.75 0/1
PSNR 17.49 25.26 25.35 26.24 26.57

mIoU(%) 55.10 56.51 57.15 58.12 3.62

Table 5. Different weighting factors effect under ScanNet [8] gen-
eralization settings.

Reference viewQuery view

Feature map of channel 14 Intra-view attention mapFeature map of channel 9

Figure 6. Visualization of 2D CNN features from ResUnet and
intra-view attention map. It shows that our ResUnet can help S-
Ray learn reasonable geometry for contextual semantics and the
intra-view attention map is closely related to the visibility.

Effectiveness of the CRA module. To further validate the
computational effectiveness of our Cross-Reprojection At-
tention (CRA) module, we provide the comparisons with
Dense Attention in FLOPs and Memory usage.

Table 6 and Table 7 show the computational perfor-
mance of real data by adopting different settings of our
Cross-Reprojection Attention (CRA) module. We observe
that directly applying the dense attention over multi-view
reprojected rays suffers from heavy computational cost
and high GPU memory. In contrast, our CRA mod-
ule can achieve the comparable performance of dense

11

Description GFLOPs mIoU(%) Total Acc(%)

w/o CRA 0 76.30 86.02
Dense Attention 10.25 90.46 94.52
only intra-view Att 3.05 81.24 89.58
only cross-view Att 2.35 87.01 93.34
full CRA 5.40 91.08 98.20

Table 6. Performance on real data [8] for different settings of
Cross-Reprojection Attention module (CRA). FLOPs increments
are estimated for the input of 1024× 64× 8× 32.

Description Memory(MB) mIoU(%) Total Acc(%)

w/o CRA 0 76.30 86.02
Dense Attention 17647 90.46 94.52
only intra-view Att 3899 81.24 89.58
only cross-view Att 1583 87.01 93.34
full CRA 4143 91.08 98.20

Table 7. Performance on real data [8] for different settings of
Cross-Reprojection Attention module (CRA). Memory increments
are estimated for an input of 1024× 64× 8× 32.

attention with friendly GPU memory and high compu-
tational efficiency. Specifically, the design of CRA can
improve the performance by 47.3% in FlOPs and 76.5%
in GPU memory. These results prove that the proposed
cross-reprojection attention can achieve high mIoU and
total accuracy by capturing dense and global contextual
information with computational efficiency.

Semantic ray construction. To construct the final
semantic ray in Section 3.4 of our paper, we assign distinct
weights to different source views and compute the semantic
ray with semantic consistency. Specifically, we design the
Semantic-aware Weight Network to rescore the significance
of each view with a hyperparameter τ , as

w ∈ C(τ) :=

{
w : 0 <

τ

m
< wi <

1

τm
,

m∑
i=1

wi = 1

}
,

(17)
where w is the view reweighting vector with length m in-
dicating the importance of source views. Instead of mean
aggregation which ignores the different significance of dif-
ferent source views, the hyperparameter τ controls the se-
mantic awareness of each view. The effectiveness of τ can
be seen in Table 8.

hyperparameter τ mIoU(%) Total Accuracy(%) Average Accuracy(%)

1 54.21 77.13 59.05
0.8 56.33 78.01 60.37
0.7 57.15 78.24 62.55
0.5 55.70 76.64 60.80
0.2 54.03 77.25 61.34

Table 8. Performance on real data [8] for different settings of hy-
perparameter τ in test set.

From Table 8, we observe that we can improve the per-
formance of semantic segmentation by assigning different
weights to each source view with hyperparameter τ . Note
that τ = 1 means the mean aggregation operation.

Training process. Given multiple views of a scene,
we construct a training pair of source and query view
(i.e., target view) by first randomly selecting a target
view, and sampling 8 nearby but sparse views as source
views. We follow [28] to build our sampling strategy. The
performance of our method in different training iterations
can be found in Table 16. The results show that we only
require 260k iterations for 20 hours to train our S-Ray over
60 different real scenes, which demonstrates the efficiency
and effectiveness of our network design.

More comparisons with Semantic-NeRF. To further
show our strong and fast generalizability in a novel
unseen scene, we compare our performance with Semantic-
NeRF [63] in per-scene optimization. The results are shown
in Table 17. While Semantic-NeRF [63] needs to train one
independent model for an unseen scene, we observe that
our network S-Ray can effectively generalize across unseen
scenes. What’s more, our direct result can be improved by
fine-tuning on more images for only 10 min (2k iterations),
which achieves comparable quality with Semantic-NeRF
for 100k iterations per-scene optimization. Moreover,
Semantic-NeRF shows very limited generalizability by first
generating pseudo semantic labels for an unseen scene with
a pretrained model, and then training on this scene with the
pseudo labels. In this way, Semantic-NeRF is able to apply
to new scenes without GT labels. In contrast, our S-Ray
provides stronger generalization ability by enabling directly
test on unseen scenes. We provide additional experiments
in Table 9.

Comparison with GPNR. The recent work GPNR [49]
also generates novel views from unseen scenes by enabling
cross-view communication through the attention mecha-
nism, which makes it a bit similar to our S-Ray. To further
justify the motivation and novelty, we summarize several
key differences as follows. Tasks: GPNR utilizes fully
attention-based architecture for color rendering while our
S-Ray focuses on learning a generalizable semantic field
for semantic rendering. Embeddings: GPNR applies three
forms of positional encoding to encode the information of
location, camera pose, view direction, etc. In contrast, our
proposed S-Ray only leverages image features with point
coordinates without any handcrafted feature engineering.
In this sense, our S-Ray enjoys a simpler design in a more
efficient manner. Training cost. While GPNR requires
training 24 hours on 32 TPUs, S-Ray only needs a single
RTX3090-Ti GPU with similar training time.

12

w/o ft ft 5k(p) ft 5k(gt) ft 50k(p) ft 50k(gt) ft converge(p) ft converge(gt)
S-NeRF N/A 78.59 86.32 85.64 91.33 92.10 95.24
S-Ray 77.82 88.07 93.40 91.25 95.15 92.43 95.39

Table 9. More mIoU comparisons with SemanticNeRF(S-NeRF)
in the scene0160-01 from ScanNet. Same with S-NeRF, we choose
pretrained DeepLabV3+ [7] to generate pseudo semantic labels
for finetuning. “p” means finetuning with pseudo labels, and “gt”
means finetuning with ground truth.

More discussion for reconstruction quality. To further
demonstrate the reconstruction quality and generalizability
of S-Ray, we evaluate S-Ray with NeuRay [28], MVS-
NeRF [4], and IBR-Net [55] on two typical benchmark
datasets (i.e., Real Forward-facing [33] and Realistic Syn-
thetic 360◦ [34]) in Table 10. In general, Table 10 shows
our Cross-Reprojection Attention module is also useful for
generalizable NeRFs with out semantic supervision. While

Realistic Synthetic 360° Real Forward-facing
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

MVSNeRF 23.46 0.851 0.172 22.93 0.794 0.260
IBRNet 24.52 0.874 0.158 24.17 0.802 0.215
NeuRay 26.73 0.908 0.123 25.35 0.824 0.198

S-Ray(Ours) 26.84 0.917 0.115 25.68 0.833 0.180

Table 10. Quantitative comparisons of scene rendering in the
generalization setting. All generalization methods including our
method are pretrained on the same scenes and tested on unseen
test scenes.

the three mentioned methods in Table 10 and our method
are image-based rendering, the main difference lies in how
to extract useful features: (a) MVS-NeRF leverages cost
volume to extract geometry features, which benefits the
acquisition of density; IBRNet performs feature attention
on rays in 3D space and NeuRay further extracts the
occlusion-aware features by explicitly modeling occlusion.
Their features are sparse in 3D space but sufficient for color
rendering. (b) Our method goes back to the 2D reprojection
space and obtains dense attention by cascading two sparse
attention modules, thus extracting rich semantic and
geometric features. A key point is that we apply a ResUnet
segmentation network fro context feature extraction to
get semantic priors, which is not present in the previous
methods.

Disscusion of the number of source views. We ob-
serve that using more source views on our S-Ray model can
improve semantic rendering quality. The results are shown
in Table 11. The reason is that adding more reference views
in training means leveraging more contextual information
for semantic feature learning to build a larger 3D contex-
tual space and reconstruct the final semantic ray, which
improves the view consistency and accuracy of semantic
segmentation.

Ns mIoU(%) Total Acc(%) Avg Acc(%) PSNR SSIM

1 67.55 86.15 73.73 26.47 0.9077
4 75.41 90.51 81.06 30.90 0.9368
8 79.97 93.06 84.92 29.52 0.9106
12 83.21 93.89 88.07 28.57 0.8969
16 84.84 94.33 89.78 27.85 0.8859

Table 11. Performance(mIoU, Total accuracy, Average accuracy,
PSNR, SSIM) on the real data scene [8] wiht different source view
numbers Ns.

Disccusion of semantic-aware weight. In semantic
ray construction, we learn the view reweighting vector w
to rescore the significance of each source view. To further
demonstrate the effectiveness of this rescore strategy, we
show the example in Figure 7. The results show that w can
distinct the different significance of different source views
to the query semantic ray.

Network architecture
Semantic feature extraction. Given input views and a
query ray, we project the ray to each input view and ap-
ply the semantic feature extraction module in Table 12 to
learn contextual features and build an initial 3D contextual
space. The details can be found in Table 12 and Section 3.2
in the paper.
Cross-Reprojection Attention. To model full semantic-
aware dependencies from the 3D contextual space with
computational efficiency, we design the Cross-Reprojection
Attention module in Table 13 to learn dense and global con-
textual information, which can finally benefit the perfor-
mance of semantic segmentation. The details of architec-
ture and design can be found in Table 13 and Section 3.3 in
the paper.
Semantic-aware weight network. To construct the final
semantic ray from refined 3D contextual space and learn
the semantic consistency along the ray, we introduce the
semantic-aware weight network in Table 14 to rescore the
significance of each source view. More experiments about
the semantic-aware weight net can be found in Table 8, and
we show architecture details in Table 14 and Section 3.4 of
the paper.
Geometry-aware network. To build our generalizable se-
mantic field, we adopt a geometry-aware network to predict
density σ and render the final semantic field with semantic
logits. Moreover, we also leverage this network to produce
the radiance and render a radiance field to show our render-
ing quality. We show the details of this network in Table 15
and Section 3.4 of the paper.

13

Type Size/Channels Activation Stride Normalization

Input 1: RGB images - - - -
Input 2: View direction differences - - - -
L1: Conv 7× 7 3, 16 ReLU 2 Instance
L2: ResBlock 3× 3 16, 32, 32 ReLU 2, 1 Instance
L3: ResBlock 3× 3 32, 64, 64 ReLU 2, 1 Instance
L4: ResBlock 3× 3 64, 64, 64 ReLU 1, 1 Instance
L5: ResBlock 3× 3 64, 128, 128 ReLU 2, 1 Instance
L6: ResBlock 3× 3 128, 128, 128 ReLU 1, 1 Instance
L7: ResBlock 3× 3 128, 128, 128 ReLU 1, 1 Instance
L8: ResBlock 3× 3 128, 128, 128 ReLU 1, 1 Instance
L9: ResBlock 3× 3 128, 128, 128 ReLU 1, 1 Instance
L10: ResBlock 3× 3 128, 128, 128 ReLU 1, 1 Instance
L11: Conv 3× 3 128, 64 - 1 Instance
L12: Up-sample 2× - - - -
L13: Concat (L12, L4) - - - -
L14: Conv 3× 3 128, 64 - 1 Instance
L15: Conv 3× 3 64, 32 - 1 Instance
L16: Up-sample 2× - - - -
L17: Concat (L16, L2) - - - -
L18: Conv 3× 3 64, 32 - 1 Instance
L19: Conv 1× 1 32, 32 - 1 Instance
L20: Reprojection
L21: MLP (Input 2) 4, 16, 32 ELU - -
L22: Add (L21, L20) - - - -

Table 12. Semantic feature extraction.

Type Feature dimension Activation

Input: Initial 3D contextual space - -
L1: Transpose (Input) - -
L2: Position Embeddings - -
L3: Add (L1, L2) - -
L4: Multi-head Attention (nhead=4) (L3) 32 ReLU
L5: Transpose (L4) - -
L6: Multi-head Attention (nhead=4) (L5) 32 ReLU

Table 13. Cross-Reprojection Attention module.

Type Feature dimension Activation

Input 1: Initial 3D contextual space - -
Input 2: View direction differences - -
L1: Concat (Input 1, Input 2) - -
L2: MLP (L1) 37, 16, 8, 1 ELU
L3: Sigmoid (L2) - -

Table 14. Semantic-aware weight network.

14

Source view 1
� = 0.6828

Source view 2
� = 0.1677

Source view 3
� = 0.0978

Source view 4
� = 0.0518Query view

Figure 7. Different significance weight of source view. Given the query ray, we apply the semantic-aware weight network to learn the
significance weight w to restore each source view. Note that the greater weight will be assigned to the more important source view.

Type Feature dimension Activation

Input: Initial 3D contextual space - -
L1: MLP (Input) 32, 32 ELU
L2: MLP (Input) 32, 1 ELU
L3: Sigmoid (L2) - -
L4: Dot-product (L1, L3) - -
L5: Cross-view Mean (L4) - -
L6: Cross-view Varience (L4) - -
L7: Concat (L5, L6) - -
L8: MLP (L7) 64, 32, 16 ELU
L9: Multi-head Attention (nhead=4) (L8) 16 ReLU
L10: MLP (L9) 16 ELU
L11: MLP (L10) 1 ReLU

Table 15. Geometry-aware network.

Method Validation Set Test Set
mIoU(%) Total Acc(%) Avg Acc(%) mIoU(%) Total Acc(%) Avg Acc(%)

S-Ray (10k iters) 63.70 85.70 71.86 48.53 74.75 56.55
S-Ray (50k iters) 72.85 88.72 79.52 52.32 77.31 59.38
S-Ray (100k iters) 81.25 94.80 86.84 54.27 79.13 61.76
S-Ray (200k iters) 89.31 97.91 91.10 54.44 76.46 60.63
S-Ray (260k iters) 89.57 98.54 91.02 57.15 78.24 62.55
S-Ray (300k iters) 88.99 98.40 90.39 55.84 77.67 62.15

Table 16. Quantitative results (mIoU, total accuracy, average accuracy) of our method (S-Ray) in training process from multiple scenes in
real dataset [8].

15

Unseen Scenes Ground Truth S-Ray w/o ft S-Ray ft 2k iters S-NeRF 100k iters

Figure 8. Additional semantic rendering quality comparison. More qualitative comparisons between our method S-Ray and non-
generalizable method Semantic-NeRF [63] (S-NeRF for short) for semantic rendering in real data [8].

16

Ground Truth S-Ray w/o ft NeuRay w/o ft S-Ray ft 2k iters NeRF w/ 200k iters

Figure 9. Qualitative results of scene rendering for generalization (w/o ft) and fine-tuning settings (ft) in real data [8]. Adding a color
head from the geometry-aware network, We compare our method S-Ray with the generalizable rendering method NeuRay [28] and Valina
NeRF [34] with 200k iterations. 17

Steps Method mIoU(%) Average Accuracy(%) Total Accuracy(%) PSNR

0 Ours 77.22 81.68 88.53 29.47
Semantic NeRF - - - -

2k Ours 92.66 98.73 98.73 29.80
Semantic NeRF 78.32 82.69 85.81 20.62

4k Ours 93.40 98.97 98.97 29.86
Semantic NeRF 86.97 86.61 87.48 21.85

6k Ours 94.17 99.06 99.06 29.92
Semantic NeRF 87.08 87.85 88.01 22.62

8k Ours 94.59 99.15 99.15 29.95
Semantic NeRF 88.78 88.57 89.67 22.94

30k Ours 95.10 99.43 99.42 30.05
Semantic NeRF 91.78 94.86 95.78 24.78

100k Ours - - - -
Semantic NeRF 95.05 98.73 99.02 29.97

Table 17. Performance of per-scene optimization in ScanNet [8]. We compare our method S-Ray with Semantic-NeRF [63] in per-scene
optimization to show our fast generalizability in real data. Specifically, we choose the unseen scene0160 02 for comparison.

18

	1 . Introduction
	2 . Related Work
	3 . Method
	3.1 . Preliminaries
	3.2 . Building 3D Contextual Space across Views
	3.3 . Cross-Reprojection Attention
	3.4 . Semantic Ray
	3.5 . Discussion and Implementation

	4 . Experiments
	4.1 . Experiment Setup
	4.2 . Comparison with Baselines
	4.3 . Ablation Studies and Analysis

	5 . Conclusion

